Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites

نویسندگان

  • Samuel J Fuller
  • Ian T Burke
  • Duncan G G McMillan
  • Weixuan Ding
  • Douglas I Stewart
چکیده

A serial enrichment culture has been grown in an alkaline Fe(III)-citrate-containing medium from an initial inoculum from a soil layer beneath a chromium ore processing residue (COPR) disposal site where Cr(III) is accumulating from Cr(VI) containing leachate. This culture is dominated by two bacterial genera in the order Clostridiales, Tissierella, and an unnamed Clostridium XI subgroup. This paper investigates the growth characteristics of the culture when Cr(VI) is added to the growth medium and when aquifer sand is substituted for Fe(III)-citrate. The aim is to determine how the availability and chemical form of Fe(III) affects the growth of the bacterial consortium, to determine the impact of Cr(VI) on growth, and thus attempt to understand the factors that are controlling Cr(III) accumulation beneath the COPR site. The culture can grow fermentatively at pH 9.2, but growth is stronger when it is associated with Fe(III) reduction. It can withstand Cr(VI) in the medium, but growth only occurs once Cr(VI) is removed from solution. Cr(VI) reduced the abundance of Tissierella sp. in the culture, whereas the Clostridium XI sp. was Cr(VI) tolerant. In contrast, growth with solid phase Fe(III)-oxyhydroxides (present as coatings on aquifer sand) favoured the Tissierella C sp., possibly because it produces riboflavin as an extracellular electron shuttling compound allowing more efficient electron transfer to solid Fe(III) phases. Thus, it is suggested that bacterially mediated Cr(III) reduction in the soil beneath the COPR site is dependent on Fe(III) reduction to sustain the bacterial community.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search...

متن کامل

Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium.

Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as e...

متن کامل

Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms.

Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled ...

متن کامل

Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.

Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently...

متن کامل

Some Investigation on Bioremediation of PahsContaminated Soil in Iran Tar Refinery

The main purpose of this research is studying the possibility of bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soils in Iran’s tar refinery area located in Isfahan. For many years a great quantity of tar produced by neighboring metallurgical plant has been stored in lagoons as natural reservoirs, causing the contamination of soil in this area. Microorganisms capable of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 226  شماره 

صفحات  -

تاریخ انتشار 2015